


## **Contents**

- 1 Background
- 2 Labour Force Survey in Vietnam
- 3 Implementation process
- 4 Results and solutions
- Implementation plan

# Background

#### International

- Data is getting bigger, more diverse and more complex
- Algorithms are getting more and more optimized
- Application of AI in many fields

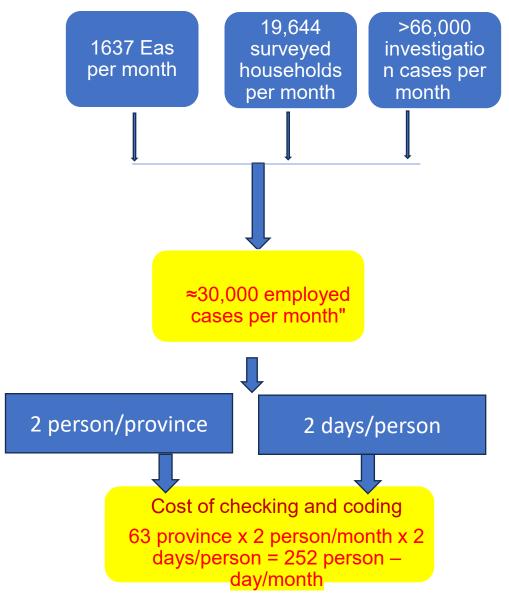
#### **National context**

- Demand for fast and accurate data provision
- Many repeated surveys with unchanged questionnaires

## **Labour Force Survey in Vietnam**

Monthly data collecting and processing

Coverage across 63 provinces/cities

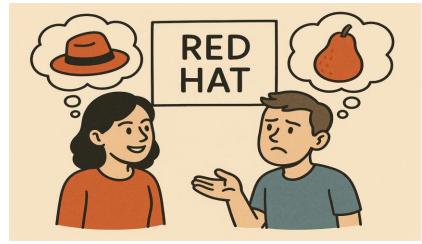

Quarterly socio-economic report

Labour Force Survey in Vietnam

Diverse and complex indicators

1,637 EAs per month
= more than 66,000 cases
per month

# Occupational coding




## Occupational coding

The respondent's written answers were incomplete or insufficient, leading to incorrect coding by the coder

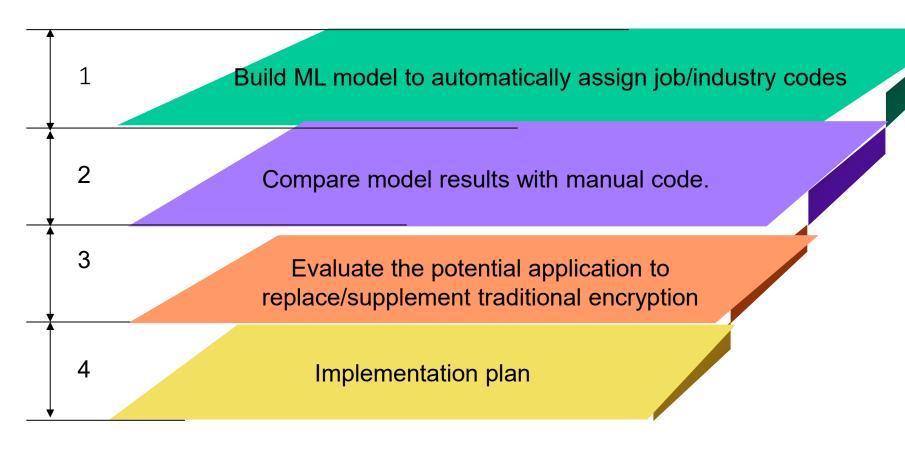
Lack of consistency: Coding based on the subjective judgment of the coder





# Occupational coding

Prolonged data processing time


Additional data processing costs

Low accuracy

Lack of consistency

Research to
Develop
Machine
Learning–Based
Automatic
Coding
Guidelines

# **Objective**



### IMPLEMENTATION PROCESS

# Data sources

- LFS survey data from 2021 to 2024
- Data size: over 400,000 cases
- Variables in the data: "main\_task", "job\_title", "education\_level", "economic\_sector", "job code"



Merge data, define description columns, code columns



**TOOL: PYTHON** 

## **IMPLEMENTATION PROCESS**

| Text preprocessing                                | Text Normalization, Word Separation, Stop<br>Word Removal, Word Normalization, Acronym<br>Handling, Combine Text Fields                       |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Train-test split                                  | Train-test ratio: 80-20                                                                                                                       |
| TF-IDF Vectorization                              | Convert data (especially text, images, or discrete features) into a numerical form (number vectors) that the model can understand and process |
| Test models and evaluate to choose the best model | LogisticRegression, LinearSVC, Naives Bayer, CosineCentroid                                                                                   |
| Test models and evaluate to choose the best model | Predicting job codes on new data                                                                                                              |

## **MODEL EVALUATION RESULTS**

| Model              | Accuracy | Train_time(s) | Predict_time(s) |
|--------------------|----------|---------------|-----------------|
| LogisticRegression | 0.700753 | 342.5639112   | 0.666987419     |
| LinearSVC          | 0.707015 | 1414.737299   | 1.167625427     |
| MultinomialNB      | 0.614936 | 35.45636511   | 1.075924158     |
| CosineCentroid     | 0.542409 | 130.090924    | 18.46308208     |

**Best Model: Linear SVC** 

**Strength:** Best performance, Accuracy (0.70715)

### PREDICTIONS FOR NEW DATA

Data used for prediction: LFS data Q2 2025 with manual coding

| 🗞 job_code | a main_task            | <b>ℴa</b> job_title | educatio<br>n_level | €a economic_sector  |
|------------|------------------------|---------------------|---------------------|---------------------|
| 5211       | Nhân viên bán xăng dầu | Nhân viên           | 3,00                | Kinh doanh xăng dầu |
| 3434       | Nấu ăn                 | Nhân viên           | 3,00                | Dịch vụ ăn uống     |
| 5246       | Bán hàng nước          | Tự làm              | 1,00                | Bán hàng nước       |



Best model

- Prediction result: "predict\_job\_code" is generated on the prediction data file

| ₽ job_title | educatio n_level |                     | <b>₽</b> a text    | predicted  job_cod e |
|-------------|------------------|---------------------|--------------------|----------------------|
| Nhân viên   | 3,00             | Kinh doanh xăng dầu | Nhân viên bán xăng | 5223                 |
| Nhân viên   | 3,00             | Dịch vụ ăn uống     | Nấu ăn Nhân viên 3 | 5120                 |
| Tự làm      | 1,00             | Bán hàng nước       | Bán hàng nước Tự I | 5211                 |

#### PREDICTIONS FOR NEW DATA

Find top 1 and top 3
AccuracyTop 1: Predicts correctly the first time,
Top 3: Safe "suggestions", reduces errors, especially
when job\_code has many classes and data is highly
diverse.



Python code

Top 1- Accuracy: 0,7015 Top 3 - Accuracy: 0,8594

## PREDICTIONS FOR NEW DATA

TOP - 3

|              |             | education _level | economic _sector |             |        |        |        |
|--------------|-------------|------------------|------------------|-------------|--------|--------|--------|
| bộ đội       | không       | 5,00             | bộ đội           | bộ đội khô  | 120.0  | 130.0  | 320.0  |
| kỹ thuật máy | nhân viên   | 5,00             | an ninh qu       | kỹ thuật m  | 2152.0 | 220.0  | 130.0  |
| bộ đội       | bộ đội      | 4,00             | quốc phòng       | bộ đội bộ đ | 120.0  | 130.0  | 110.0  |
| bộ đội       | không       | 3,00             | quốc phòng       | bộ đội khô  | 130.0  | 120.0  | 110.0  |
| bộ đội chu   | bộ đội      | 3,00             | an ninh qu       | bộ đội chu  | 130.0  | 110.0  | 120.0  |
| bộ đội chu   | bộ đội      | 2,00             | an ninh qu       | bộ đội chu  | 130.0  | 110.0  | 120.0  |
| bộ đội chu   | bộ đội      | 2,00             | an ninh qu       | bộ đội chu  | 130.0  | 110.0  | 120.0  |
| quản lý đư   | quản lý đư  | 5,00             | quản lý đư       | quản lý đư  | 1739.0 | 3112.0 | 3139.0 |
| phó ban thi  | phó ban thi | 5,00             | quản lý nh       | phó ban thi | 2422.0 | 1232.0 | 2212.0 |
| 441 1 2 441  | 441 1 4 441 |                  |                  | 44 44.      | 400.0  |        |        |

### PREDICTED RESULTS

# 70% match

- The match between manual and ML code is: 70 (consistent with existing studies)
- If referring to Top 3, the match probability is up to 85.9%

#### **Data**

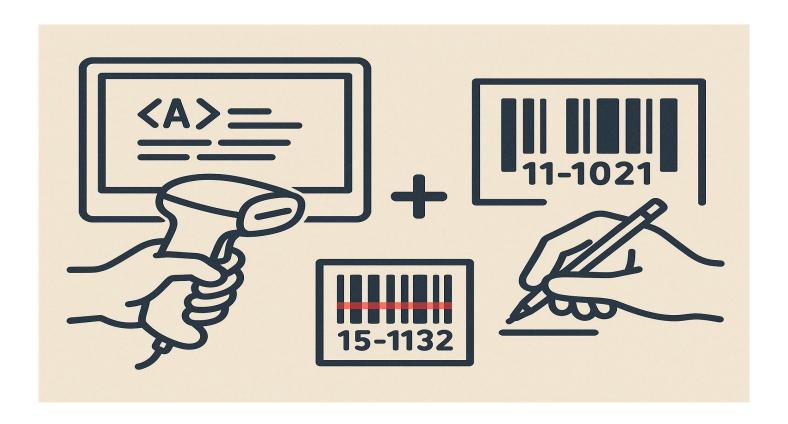
- -- Inconsistent, missing information
- Data imbalance between groups

#### 30% difference

#### Model

- Algorithm limitations
- How to predict
- Training data: insufficient samples, imbalance

#### Human


- Subjective, inconsistent judgment
- Humans can understand deep semantics

## PREDICTED RESULTS

|                      | Automatic coding | Manual coding               | Automatic and manual combination |
|----------------------|------------------|-----------------------------|----------------------------------|
| Processing speed     | 20 minutes       | 4 days                      | 1 days                           |
| Accuracy             | 70%              | 95-97%                      | 96-98%                           |
| Human resource costs |                  | 2 people working for 2 days | 1 people working for 1 days      |

**Combination of manual and automatic coding** 

## **SOLUTION**



Combination of manual and automatic coding

## SOLUTION

OCCUPATION DESCRIPTION DATA **AUTOMATIC CODING SYSTEM AND TOP 3 SUGGESTIONS** CODING STAFF CHECK CONFIRM OR EDIT, FEEDBACK FOR COMPLETION CENTRAL OFFICIALS CHECK DIFFERENT CASES AND SEND FOR VERIFICATION IF NECESSARY

## **Lessons and Experiences**

- Input data is very important: inaccurate description, data imbalance...
- It is necessary to pilot and evaluate the accuracy with many aspects: increase the volume of training data set, handle data imbalance, add independent variables...
- It is not advisable to rely entirely on machines but still need human control.

#### THE WAY FORWARD

1 Pilot

Evaluate the feasibility

Collect feedback to improve the model

Enhance data quality

- Expand the training dataset
- Update corrected cases for retraining
- Improve data cleaning and reduce imbalance

Test new algorithms

- Deep Learning
- Gradient Boosting

